Computer Science Technical Report TR - 08 - 13 July 18 , 2008 Emil M . Constantinescu and Adrian Sandu “ Achieving Very High Order for Implicit Explicit Time
نویسندگان
چکیده
In this paper we construct extrapolated implicit-explicit time stepping methods that allow to efficiently solve problems with both stiff and non-stiff components. The proposed methods can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework. These methods are simple to construct, easy to implement and parallelize. We establish the existence of perturbed asymptotic expansions of global errors, explain the convergence orders of these methods, and explore their linear stability properties. Numerical results with stiff ODEs, DAEs, and PDEs illustrate the theoretical findings and the potential of these methods to solve multiphysics multiscale problems.
منابع مشابه
Computer Science Technical Report TR - 08 - 12 July 3 , 2008 Emil
In this manuscript we construct extrapolated multirate discretization methods that allow to efficiently solve problems that have components with different dynamics. This approach is suited for the time integration of multiscale ordinary and partial differential equations and provides highly accurate discretizations. We analyze the linear stability properties of the multirate explicit and linear...
متن کاملComputer Science Technical Report TR - 07 - 12 ( 955 ) March 22 , 2007
This paper constructs multirate time discretizations for hyperbolic conservation laws that allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small gl...
متن کاملTR - 07 - 30 ( 989 ) August 22 , 2007 Adrian Sandu and Emil M . Constantinescu
This paper constructs multirate linear multistep time discretizations based on Adams-Bashforth methods. These methods are aimed at solving conservation laws and allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL co...
متن کاملExtrapolated Multirate Methods for Differential Equations with Multiple Time Scales
In this paper we construct extrapolated multirate discretization methods that allows one to efficiently solve problems that have components with different dynamics. This approach is suited for the time integration of multiscale ordinary and partial differential equations and provides highly accurate discretizations. We analyze the linear stability properties of the multirate explicit and linear...
متن کاملExtrapolated Implicit-Explicit Time Stepping
This paper constructs extrapolated implicit-explicit time stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework. Implicit-explicit schemes based on extrapolation are simple to construct, ea...
متن کامل